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AbstraeL Some methods have teen  developed to calculate the su,(Z) Clebwh-Gordan 
coeffcienu (CGC). Here we develop a method based on lhe calculation of Clebwh-Gordan 
generating functions through lhe use of ‘quantum algebraic’ coherent states Calculating 
the su&) OGC by means of this generating function is an easy and straightfomard lask. 

1. Introduction 

Quantum algebras have been extensively used in the literature for different purposes, 
in different areas of interest [I]. They are also hown as quantum universal enveloping 
algebras and are mathematically not less than Hopf algebras. 

The study of coherent states associated with quantum algebras for the q-harmonic 
oscillator has been established some time ago [2] and a resolution of unity for the 
q-analogue mcillator coherent states has already been found through the use of the 
definitions of q-differentiation and q-integration, as seen in [3,4]. For the su,(2) 
algebra, q-analogues of coherent states [SI have been obtained and they are shown 
to have a resolution of unity related to the q-differential calculus [6]. 

The aim of this work is to calculate a generating function for the su,(2) Clebsch- 
Gordan coefficients. The method we use here is based on the idea developed in [7] 
for the usual su(2) Clebsch-Gordan coefficients. For calculating the su,(2) Clebsch- 
Gordan coefficients, other methods have also been developed, namely, some algebraic 
methods [S,9] and a method based on the basic hyper-geometric functions [io]. 
The underlying idea for the following derivation of the Clebsch-Gordan generating 
function is extremely simple and yields very easily handled expressions. Once the 
generating functions are obtained it becomes trivial to write the wwred su,(2) 
Clebsch-Gordan coefficients down, as will be shown later in the present paper. 

2. su,(2) coherent states 

We begin this section by giving some definitions and expressions which will be vital 
to the development of our method. For the sake of completeness and simplicity in 
the main text, some formulae are given in appendix 1. 
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0M54470/931051139+08$07,50 @ 1993 IOP Publishing Ltd 1139 



1140 S S Avancini and D P Menaes 

The generators of the su,(2) algebra obey the following commutation relations 
PI 

where the q-number [+I is defined as 

The above opcrators, when applied to a basis l j  m) of the carrier space V j  of the 
representation Ti of su,(2) yield 

(3) 
J u l j  4 = mlj m) 
J * I ~  m) = ( [ j  T m][j  i m -t 1])‘”1j m * I).  

with m = - j , - j  + 1,. . . , j and j = O , l / i ? , l , .  .. . 
The q-analogues of the su(2) coherent states are usually written as [6] 

where 

and 

the q-binomial coefficient being defined in appendix 1. 
For this representation, it can be shown that the resolution of unity is 161 

I = JdP (.)I.)(ZI (7) 

the measure being 

dz I 
Pj + 11 1 dp( z )  = - 

T [ i ( + ) l ~ l ~ ] ~ J + ~  

where [z( l t )y]”  is defined in appendix 1 and d2z = idOd,1~1~, the integration over 
O running from 0 to 2n and the q-integration over lzlz from 0 to infinity. 
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Given an arbitrary state 14) in VJ and due to the existence of the resolution 
of unity, one may find a holomorphic (or q-analogue Bargmann [U]) representation 
that reads 

+(z)  = (44) (9) 

(10) 

with the standard su,(2) basis given by 

4jj,(Z) = ( Z l j  m) = cj, =j+m.  

The su,(2) operators in the holomorphic representation, which obey the commutation 
relations given by (1) are [6] 

J ,  = za/az - j 
J+ = 4 2 j  - ra/az] 
J- = D, 

where D, is the qderivative [3] such that 

Observing (4). it follows that the scalar product between two coherent states 12) and 
Ix) is 

( X I 4  = 11 (+) xil" 

k ( x ,  2) = [l (t) xi]" 

(13) 
Given an arbitrary state 14) > in V i ,  such that 4(x) = (XI+) and utilizing (7) and 
(13), the reproducing kernel is shown to be 

(14) 
and therefore 

4 ( x )  = JdP(z)k(X3z)4(z) .  (15) 

From now on, all calculations are performed in the qdefomed space. 

3. Vector addition of angular momenta 

The total angular momentum of an su,(2) system consisting of two sub-systems 
j = j, t jz, where j, and j z  are the angular momenta of sub-systems 1 and 2 
respectively, such that l j ,  - j,l < j < j ,  + j ,  is given by [S, 91 

Notice that J,( i )  and J+(i) are the operators defined in (ll), where for i = 1, z and 
j become z1 and j ,  and for i = 2, they become z2 and j2 The Same modifications 
hold in (9) and (10). 
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4. Coherent states in the space Vil@Vjl 

The uncoupled basis in the space Vjl @ Vjz has the form ljlm,)lj2m2) and its 
representation is +j,m,(,zl)+j2m2(z2). It is well known that the direct product of 
representations TJl @ TJZ can be decomposed as a direct sum Tjl @ Ti, = @Tj 
[12] where lj, - j21 < j < j ,  + j,. In the carrier space Vj  of Tj, the coherent state 
is defined to be 

S S Avancini and D P Menez-es 

1 

1.) = e ;J+(12) l j  - j )  (18) 

in analogy with (4), where l j -j) stands for the lowest weight state in the Vj  space. 
From the above considerations, it is straightforwardly shown that the state obeying 
the conditions J-(12)4j,-j(z,,z2) = 0 and Ju(12)~j,-j(zl,z2) = -j4j,-j(zl,zz) 
is 

(19) -(j+I) j t + j z - j  4j,-j(zl,zz) = cj (21 (-1 4 221 

where 

q(h+ jz - j )C i t l t j ,  -jW (20) 

is the normalization constant. In the notation used for this calculation, +,,-j(zl,z2) 
is defined as 

4j,-j(zl,z2) = (z ,  z2lj - j )  

where Izl z2) = Izl)lz2).with Izl) being the coherent state in the space Vjl and Iz,) 
the coherent state in VIZ. 

In the above calculations, the qderivatives written in appendix 1 have been used. 

5. Generating functions 

From the definitions for the coherent states in the V j  space, vide (18) and in the 
Vjl @ VJz space, we obtain 

(21) zj+mt z j z t n *  - j t m  
1 x ( j ,  mi 3, m2 l j  m)* 

and we are left with the calculation of (zl +./x), i.e. the generating function from 
which the Clebsch-Gordan coefficients appearing in the right-hand side of the above 
expression can be easily obtained by qdserentiation, as is discussed later. One has 
to bear in mind that 1z1)1z2)1z1 z2)  is the coherent state in the Vjl @Viz space and 
Ix) is the coherent state coming from the VJ space. Using the definition for the 



[1 (+) z q ( j j - 2 j z t j t m )  211" 

[1 (+) zq(j~-2jztm)22]( j~tjz- j -m),  

Finally, another simplification can be performed with the help of the expression 
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which is the Clebsch-Gordan generating function we are looking for. Obtaining a 
general formula for the Clebsch-Gordan coefficient is now a simple task. From (21) 
we can write 

S S Avancini and D P Menezes 

(jl ml j ,  m2lj m)q 

(31) gj i tmigj i tnrzgj .+m 
*I 22 x (z1 ~21X)lrl=r,=*i=o. 

With the help of a q-analogue of Leibnitz’s rule given in appendix 1 (39), we finally 
obtain 

(jl ml j z  m,lj m)* 

q J i ( j z + ~ i ) - j z ( j i ~ ~ - ~ z )  [j ,  + j ,  - j]![jl - j ,  + j ] ! [ j ,  - j ,  + j]! 

(-1)k q - ( ~ t + j z + j + l ) ~ [ ~ ] ! - ~ [ j l t j , - j  - k ~ ! - * [ j - j ~ - ~ ~ +  k]!-l 
k 

x [ j  - j, t m i  + k]!-l[jl - m1 - k]!4[j2 -t m2 - k]!-1 

which is a general expression for su (2) Clebsch-Gordan coefficients. This expression 
agrees with (47) of Groza ef a1 [lo{ 

We remark, however, that calculating Clebsch-Gordan coefficients is often easier 
if calculation is performed by substituting the ’wanted’ values in (31) and then q- 
differentiating the obtained expressions instead of using the above general formula, 
specially if an ‘algebraic manipulator program’ is available. Simple examples of how to 
obtain the Clebsch-Gordan coefficient itself by means of qdserentiation are worked 
out in appendix 2. 

6. Conclusion 

In this paper we have developed a way of calculating a su,(2) Clebsch-Gordan 
coefficients generating function through the use of coherent states in a holomorphic 
(or q-analogue Bargmann) representation. The advantage of this method is that 
the generating function is obtained in a straightforward way. With the help of q- 
differentiation, the suq(2) Clebsch-Gordan coefficient$ are easily worked out from 
the generating function, as shown in appendix 2 

It is worth pointing out that for q = 1, the generating function written in (30) 
becomes precisely expression (14), given by Belissard and Holtz [7] for the 4 2 )  
algebra. 
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Appendix 1 

Some formulae mentioned in the main text are shown below. The expression 

[a (&) b]m = 2 [ ;] am-k(&b)k 
k=O 

where 

is the q-binomial deEnition. Some qderivatives are 

(34) D,(e:") = a ep an 

D, z" = [n] (35) 

D,(f(.)s(.)) = ( D z f b ) ) 9 ( 4 Z )  t f(4-lz)Dzg(z) (36) 

D,,[azl(*)bzz]m = *[m]b[azl(*)bzz]m-l (37) 

Dzf(q")  = 4 D*f(.)l,=,, (38) 

where a and b are constants and [ a z , ( i ) b ~ , ] ~  is defined in (32) above. From (36), 
and the following property: 

one can show that the q-analogue Leibnitz's rule is given by 

Appendix 2 

Here we show two simple examples of how to obtain the Clebsch-Gordan coefficients 
by qdifferentiating the generating function. 

Erample 1. Let's calculate ( j ,  m 2 Olj, t 2 m),, a necessary coefficient when 
calculating quadrupole transition probabilities in a large number of atomic and nuclear 
models [14]. Substituting the correct values for j,, ml, j,, m,, j and m in (30) we 
have 

(21 zzlx) = cj [U+)%?- 2"1]2j1 [1(t),+Z2]4. (40) 
By qdifferentiating the above expression, we obtain 

where Cj = 1. Finally, substituting the above expression in (31), we obtain 

(j1m2 ou, + 2 m)p 

which is precisely the expression found in table 4 of [SI. 
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Butnple 2. The ( j ,  ml 112 l/21jl - 112 m)p coefficient, where m = m1 t 112 is 
calculated below. Again, from (30) we may write 

from where we calculate 

where 

c. = [Zj l l !  
3 J[2j, - 1]![2j, t l]! 

and hence 

(43) 

which is the su,(2) Clebsch-Gordan coefficient also found in table 1 of [SI. 
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